skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gootkin, Keyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The light curves of radioactive transients, such as supernovae and kilonovae, are powered by the decay of radioisotopes, which release high-energy leptons through $$\beta ^+$$ and $$\beta ^-$$ decays. These leptons deposit energy into the expanding ejecta. As the ejecta density decreases during expansion, the plasma becomes collisionless, with particle motion governed by electromagnetic forces. In such environments, strong or turbulent magnetic fields are thought to confine particles, though the origin of these fields and the confinement mechanism have remained unclear. Using fully kinetic particle-in-cell (PIC) simulations, we demonstrate that plasma instabilities can naturally confine high-energy leptons. These leptons generate magnetic fields through plasma streaming instabilities, even in the absence of pre-existing fields. The self-generated magnetic fields slow lepton diffusion, enabling confinement, and transferring energy to thermal electrons and ions. Our results naturally explain the positron trapping inferred from late-time observations of thermonuclear and core-collapse supernovae. Furthermore, they suggest potential implications for electron dynamics in the ejecta of kilonovae. We also estimate synchrotron radio luminosities from positrons for Type Ia supernovae and find that such emission could only be detectable with next-generation radio observatories from a Galactic or local-group supernova in an environment without any circumstellar material. 
    more » « less
  2. Abstract δScuti variables are found at the intersection of the classical instability strip and the main sequence on the Hertzsprung–Russell diagram. With space-based photometry providing millions of light curves of A-F type stars, we can now probe the occurrence rate ofδScuti pulsations in detail. Using the 30 minutes cadence light curves from NASA's Transiting Exoplanet Survey Satellite's first 26 sectors, we identify variability in 103,810 stars within 5–24 cycles per day down to a magnitude ofT= 11.25. We fit the period–luminosity relation of the fundamental radial mode forδScuti stars in the GaiaGband, allowing us to distinguish classical pulsators from contaminants for a subset of 39,367 stars. Out of this subset, over 15,918 are found on or above the expected period–luminosity relation. We derive an empirical red edge to the classical instability strip using Gaia photometry. The center where the pulsator fraction peaks at 50%–70%, combined with the red edge, agrees well with previous work in the Kepler field. While many variable sources are found below the period–luminosity relation, over 85% of sources inside of the classical instability strip derived in this work are consistent with beingδScuti stars. The remaining 15% of variables within the instability strip are likely hybrid orγDoradus pulsators. Finally, we discover strong evidence for a correlation between pulsator fraction and spectral line broadening from the Radial Velocity Spectrometer on board the Gaia spacecraft, confirming that rotation has a role in driving pulsations inδScuti stars. 
    more » « less
  3. null (Ed.)